TLabel: Text clustering and labelling in OLAP environment

Nouvel opérateur d’agrégation par catégorisation dans les cubes de textes

Lamia Oukid, Omar Boussaid, Nadjia Benblidia et Fadila Bentayeb
Context

Classical OLAP

20% structured data of information system

Text OLAP

80% non-structured data of information system

Need new OLAP operators for text data
Towards text OLAP

- **Classical OLAP**
 - Exploring and navigating through data

- **OLAP limitation**
 - Not adapted to textual data

- **Objectives**
 - Text cubes
 - Text OLAP operators
 - Integrating data semantics in OLAP analysis
OLAP / IR/Text mining

OLAP Navigating

IR Retrieving

Text mining Clustering

TLabel
Aggregating textual data
Outline

- Text cube
- Textual query analysis
- TLabel : Clustering operator in text OLAP environment
- Experiments and results
- Conclusion and future work
Text definition

- Set of terms
 - Textuel content

- Set of metadata
 - Information on textual data

- Set of concepts
 - Extracted from domain ontology
 - Enrich text contents
Text Cube

Text cube modelling

- Dimensions
 - Semantic dimensions
 - Metadata dimensions

- Textual measure M
 - Vector of weighted concepts
 - One vector per dimension

- Vector of concepts

$$M = < d_{Dim_1}, d_{Dim_2}, ..., d_{Dim_*} >$$
Text Cube

Text cube: Example

Text Cube Star Schema

Topic dimension: Computer science

Relevance propagation in the concept hierarchy

Text cube for CV collection
Decision Query

Query modeling

- Given text cube with n dimensions: Simple Query
 - $Q = <V_1, V_2, ..., V_n>$

- Decision query with user preferences
 - The user can assign weight to each dimension

- Applied method
 - Generalized Cosinus Similarity: between query-document

- Result: Relevant text documents
More than extracting relevant text documents...

- Information Retrieval
 - Searching for relevant text documents

- Extracting knowledge from text documents
 - Ranking
 - Clustering
 - Resume
 - ...

- Text mining
 - Supervised methods
 - No supervised methods
TLlabel: Text Labelling

- Combining OLAP/IR/Text mining
- Aggregating by clustering
 - Clusters of documents
 - Adapted K-means
- Assigning labels to clusters of documents
 - Domain ontology
TLlabel: Text Labelling

- **Clustering step**: OCluster - OLAP-Cluster
 - Adapeted K-means
 - Clusters of documents

- **Labelling step**
 - For each cluster, compute its **DResume**: **resume** document
 - Dresume is a vector of weighted terms
 - Assign to each cluster one label obtained from DResume
Documents Clustering

- **OCluster**: OLAP-Cluster
 - Input: set of documents obtained from decision query
 - Output: set of documents clusters
 - Method: K-means with similarity function ORank

- **ORank**: Computes the similarity between documents
 \[
 ORank(d, ct) = \sum_{i=1}^{n} (\alpha_i \times Sim(d_{Dim_i}, ct_{Dim_i})) / n
 \]
 - \(\alpha_i\): user preferences
 - \(n\): number of dimensions
For each cluster of documents

- Computes its DResume document

\[
\text{DResume} = \langle \overrightarrow{DResume_{Dim_1}}, \overrightarrow{DResume_{Dim_2}}, \ldots, \overrightarrow{DResume_{Dim_n}} \rangle
\]

\[
\overrightarrow{DResume_{Dim_i}} = \frac{\sum_{i=1}^{N} d_{Dim_i}}{N}
\]

N: Number of the documents in the cluster
Cluster Labelling

- **Input**
 - *DResume*
 - One dimension
 - Domain ontology

- **Method**
 - *Dresume* Projection on the domain ontology

- **Output**
 - Documents clusters labelled
 - One label for one cluster
OLAP analysis with TLabel

Labelling documents cluster Cl 1
Experiments & results

Experiments

- Data sources
 - 2000 CVs of candidates
 - Topic dimension: Computer science

- Ontology: hierarchy of concepts
 - Wikipedia
Experiments & results

Experiments

- Preparing data sources
 - Text Tokenisation
 - Drop stop words
 - Term Lemmatisation: Tree tagger

- Loading data into text cube
 - Semantic dimensions: Topic and Location
 - For each dimension, load the concept hierarchy from the corresponding domain ontology
 - Time Dimension
Results

Query: \(<\text{Topic= Computer Science, Location= France, Time= 2014}>\)

OCluster

<table>
<thead>
<tr>
<th>OCluster</th>
<th>Cl 1</th>
<th>Cl 2</th>
<th>Cl 3</th>
<th>Cl 4</th>
<th>Cl 5</th>
<th>Cl 6</th>
<th>Cl 7</th>
<th>Cl 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents Number</td>
<td>98</td>
<td>181</td>
<td>84</td>
<td>179</td>
<td>215</td>
<td>178</td>
<td>1</td>
<td>216</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1152</td>
</tr>
</tbody>
</table>

Labelling

<table>
<thead>
<tr>
<th>TLabel</th>
<th>Programmation-Réseau</th>
<th>Programmation-Conception</th>
<th>Programmation-Décisionnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCluster</td>
<td>Cl 1, Cl 7</td>
<td>Cl 2, Cl 3, Cl 4, Cl 6, Cl 8</td>
<td>Cl 5</td>
</tr>
<tr>
<td>Documents Number</td>
<td>99 (8%)</td>
<td>838 (73 %)</td>
<td>215 (19%)</td>
</tr>
</tbody>
</table>
Results

- Query: <Topic= Computer Science, Location= France, Time= 2014 >
Drill-down on Topic dimension with TLabel
Conclusion & Future Work

Conclusion

- **TextLabel**: Clustering text documents in text OLAP systems

- **Text mining**
 - *Ocluster*: adapting K-means in OLAP environment

- **Documents clusters labelling**
 - Dresume
 - Domain ontology

- **Experiments on CV collections**
Future Work

- Think about other methods to obtain *Dresume document*
- Cluster Labelling according to several dimensions
- Evaluating TLabel with other text collections
- Validating TLabel with known labelled clusters