Foundations of Database Systems for Text Analytics

Benny Kimelfeld
Faculty of Computer Science
Technion, Israel
Outline

Text Analytics in Modern Applications

• Information Extraction Systems & Formalism
• Foundational Research Challenges
• Conclusions and Outlook
Text Analytics Matters

Some important applications are based on the analysis of text-centric data; for example:

- **Semantic Search**
 - Semantic understanding & indexing of content to better match user’s intent

- **Life-Science Mining**
 - Extract knowledge bases from scientific publications

- **e-Commerce**
 - Comparison Shopping extracts & compares inventory from online sources

- **CRM / BI**
 - Monitor customer’s social-media activity for sentiment & business leads

- **Log Analysis**
 - Summarize, visualize and analyze logs produced by machines
Core Task: Information Extraction (IE)

In short: data-in-text → data-in-db
(unstructured) (structured)

“Information Extraction (IE) is the name given to any process which selectively structures and combines data which is found, explicitly stated or implied, in one or more texts. The final output of the extraction process varies; in every case, however, it can be transformed so as to populate some type of database.”

J. Cowie and Y. Wilks., Handbook of Natural Language Processing, 2000

“Information extraction is the identification, and consequent or concurrent classification and structuring into semantic classes, of specific information found in unstructured data sources, such as natural language text, making the information more suitable for information processing tasks.”

Popular Classes of IE Tasks

• Named Entity Recognition

From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University. In June 1938, he obtained his PhD from Princeton.
Popular Classes of IE Tasks

- Named Entity Recognition
- Relation Extraction

From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University. In June 1938, he obtained his PhD from Princeton.
Popular Classes of IE Tasks

- Named Entity Recognition
- Relation Extraction
- Event Extraction

From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University. In June 1938, he obtained his PhD from Princeton.
Popular Classes of IE Tasks

- Named Entity Recognition
- Relation Extraction
- Event Extraction
- Temporal IE
Popular Classes of IE Tasks

- Named Entity Recognition
- Relation Extraction
- Event Extraction
- Temporal IE
- Coreference Resolution

From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University.

In June 1938, he obtained his PhD from Princeton.
IE Paradigms: Rules & Statistics

- Rules
- ML classification
- Probabilistic graphical models
- Soft logic

“[…] rules are effective, interpretable, and are easy to customize by non-experts to cope with errors.”

Gupta & Manning, CONLL’14

- 54 industrial vendors (Who’s Who in Text Analytics, 2012)

[Chiticariu, Li, Reiss, EMNLP’ 13]
Database Management Systems

- Old news: Data management is involved!
 - Data semantics, query/analysis semantics, storage, query evaluation, indices, consistency, transactions, backup, privacy, recovery, …
 - From-scratch engineering is highly challenging

- Motivation to the concept of a general-purpose *Database Management System*
 - Most notably: relational model (pioneered by Edgar F. Codd in 1969) and SQL
“Big Data” Phenomena

<table>
<thead>
<tr>
<th>Past:</th>
<th>Present:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proprietary data in orgs. (enterprises, governments, …)</td>
<td>Proliferation of publically open data sources (Web, social, …)</td>
</tr>
<tr>
<td>Data structured/controlled by admins, e-forms, software, …</td>
<td>Uncontrolled data from humans’ free text, heterogeneous kbs, …</td>
</tr>
<tr>
<td>Massive-data analyses incurred high machinery/personnel cost</td>
<td>Business models (cloud, crowd, opensource) facilitate analyses</td>
</tr>
<tr>
<td>Analyses by specialized teams of heavily trained experts</td>
<td>Analyses by a wide community featuring a wide range of skills</td>
</tr>
</tbody>
</table>
“By 2018, the United States alone could face a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 million managers and analysts with the know-how to use the analysis of big data to make effective decisions.”

“Big data: The next frontier for innovation, competition, and productivity” McKinsey Report, May 2011

We need dev. & management systems to facilitate value extraction from Big Data by a wide range of users / skills
Outline

• Text Analytics in Modern Applications
• Information Extraction Systems & Formalism
• Foundational Research Challenges
• Conclusions and Outlook
Xlog: Datalog for IE

[Shen, Doan, Naughton, Ramakrishnan, VLDB 2007]

- Extension of (non-recursive) Datalog
- Use case: DBLife (db research kb: dblife.cs.wisc.edu)
- Data types: string, document, span
 - Focus on single-document programs
- “Procedural predicates” (p-predicates) are user-defined functions that produce relations over spans
 - Example: sentence(doc, span)
- Query-plan optimization

Kaspersky Lab CEO Eugene Kaspersky said Intel CEO Paul Otellini and the Intel board had no idea what they were in for when the company announced it was acquiring McAfee on August 19, 2010.
Figure 3: A sample Xlog program in our experiments.

“Declarative Information Extraction using Datalog with Embedded Extraction Predicates”
Instaread: Datalog + NLP

[Hoffmann, 2012]

- Datalog syntax
 - Types: string, span

- Built in collection of p-predicates
 - Various types of built-in regex formulas
 - Linguistic: deep parsing, coreference resolution, named-entity extractor

\[
\text{killed}(a, c) \iff \text{next}(a, b) \land \text{next}(b, c) \land \text{token}(b, \text{‘killed’}) \\
\land \text{capitalized}(a) \land \text{capitalized}(b)
\]
Formal Framework

• Repeated concept: Extend a relational query language with text transducers (p-predicates, usually regex formulas)

• Research challenge: theoretical underpinnings of this combined document/relation model

• Expressive power
 – Query-plan optimization: *Can we rewrite an operator via “easier” building blocks?*
 – System extensions: *Can we express a new operation using existing ones, or prove impossibility?*

• Next: a formal framework
 – With Fagin, Reiss, Vansummeren, PODS’13, JACM’15
Kaspersky Lab CEO Eugene Kaspersky said Intel CEO Paul Otellini and the Intel board had no idea what they were in for when the company announced it was acquiring McAfee on August 19, 2010.
Document Spanners

Document Spanner: a function that maps every doc. (string) into a relation over the doc.’s spans

More formally:
- Finite alphabet Σ of *symbols*
- A spanner maps each doc. $d \in \Sigma^*$ into a relation over the spans $[i,j)$ of d
- The relation has a **fixed signature** (set of attributes)
 - The attributes come from an infinite domain of variables $x, y, z, …$

Kaspersky Lab CEO Eugene Kaspersky said Intel CEO Paul Otellini and the Intel board had no idea what they were in for when the company announced it was acquiring McAfee on August 19, 2010.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,14)</td>
<td>[30,36)</td>
<td>[1,36)</td>
</tr>
<tr>
<td>[42,47)</td>
<td>[52,65)</td>
<td>[42,65)</td>
</tr>
<tr>
<td>[102,110)</td>
<td>[115,125)</td>
<td>[102,125)</td>
</tr>
</tbody>
</table>

Document d

Relation over the spans of d
Spanners as Datalog w/ Regex

- Non-recursive Datalog (NR-Datalog)
- Operate over a document (not a relational db)

Rep. of Spanners

- **Token(x)** := \[(\varepsilon \mid ._\,) x\{[a-zA-Z]^+\} (((V_\,) \.* \mid \varepsilon) \]
- **State(x)** := Token(x), [\.* x\{Georgia\mid Virginia\mid Washington\}.*]
- **Cap1st(x)** := Token(x), [\.* x\{[A-Z].*\}.*]
- **CommaSp(x,y,z)** := [\.* z\{x\{.*\}_\, y\{.*\}\}.*]
- **Loc(z)** := CommaSp(x,y,z), Cap1st(x), State(y)
- **RETURN(x,z)** := Cap1st(x), [\.*x\{.*\}_\, from_z\{.*\}.*] , Loc(z)

Carter_from_Plains,_Georgia,_Washington_from_Westmoreland,_Virginia

<table>
<thead>
<tr>
<th>x</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,7) Carter</td>
<td>Plains,_Georgia</td>
</tr>
</tbody>
</table>
Spanners as Automata

- In an accepting run, each variable opens and later closes exactly once
 ⇒ Each accepting run defines an assignment to the variables
- Nondeterministic ⇒ multiple accepting runs ⇒ multiple tuples

Another representation system for spanners
Study of Expressive Power

Spanners definable by var-stack automata = Spanners definable by regex formulas

Spanners definable by Datalog (NR) w/ regex formulas = Spanners definable by var-set automata = Spanners definable by Rel. Algebra over regex formulas

Token(x) := [\{ε | .*_\} x[[a-zA-Z]\{((,V__).*) | ε\}]
State(x) := Token(x), [.* x[Georgia|Virginia|Washington].*]
Cap1st(x) := Token(x), [.* x[A-Z].*.]*
aSp(x,y,z) := [.* z[.]* , _ y[.].].*.]*
Loc(z) := CommaSp(x,y,z) , Cap1st(x) , State(y)
TURN(x,z) := Cap1st(x) , [.*x[.]*_from_z[.]].*.] , Loc(z)

Join ⨝
Union ∪
Product ×
Projection π
Selection ζ
Difference -
Consequences

• Connections between Datalog+regex spanners and other language formalisms
 – Classic string relations [Berstel 79]
 – Graph queries (CRPQs) [Cruz et al. 87]

• Extension with string equality & difference
 – Expressiveness / closure properties

• Principles for cleaning inconsistencies
 – Follow up work [PODS’14]
 – (Later in the talk …)
IBM SystemT: SQL for IE

create view Caps as
extract regex /[A-Z](\w|-)+/ on D.text as name from Document D;

create view Last as
extract dictionary LastGaz on D.text as name from Document D;

create view CapsLast as
select CombineSpans(C.name, L.name) as name
from Caps C, Last L
where FollowsTok(C.name, L.name, 0, 0);

... regex + join w/ previous views

create view PersonAll as
(select R.name from FirstLast R) union all ...
... union all (select R.name from CapsLast R);

create view Person as select * from PersonAll R
consolidate on R.name using 'ContainedWithin';

Cleaning

[Chiticariu, Krishnamurthy, Li, Raghavan, Reiss, Vaithyanathan, ACL 2010]
SystemT Research

- Engine for AQL: SQL-like declarative IE lang.
 - AQL = Annotation Query Language

- SystemT = AQL + Runtime + Dev. Tooling
 - [Chiticariu et al., ACL 2010]: position SystemT as a high-quality and high-efficiency IE solution
 - System and IDE demos in ACL 2011, SIGMOD 2011

- Commercial product, high academic presence
 - Integration on public financial records [Hernández et al., EDBT’13, Balakrishnan et al. SIGMOD’10], NER [Chiticariu et al. EMNLP’10, ACL’10, Nagesh et al. EMNLP’12, Roy et al. SIGMOD’13], IR [Zhu et al. WWW’10, K et al. SIGIR’12, CIKM’12], sentiment analysis [Hu et al., Interact’13], social media [Sindhwani et al., IBM Journal 2011]
Outline

• Text Analytics in Modern Applications
• Information Extraction Systems & Formalism
• Foundational Research Challenges
• Conclusions and Outlook
Propelled Research

• Next, highlight 2 lines of foundational research motivated by text analytics:
 - Cleaning inconsistency w/ prioritized repairs
 - [Fagin, K, Reiss, Vansummeren 2014]
 - [Fagin, K, Kolaitis, PODS’15]
 - Frequent subgraph mining
 - [K, Kolaitis, PODS’13, TODS’14]

• Not covered:
 - Update propagation
 - [K+, VLDB’13, TODS’12, PODS’12, PODS’11]
 - Querying Markov sequences
 - [PODS’08, JACM’14]
Cleaning IE Inconsistencies

• Extractors may produce inconsistent results
 – Data artifacts
 – Developer limitations

• Rather than repairing the existing extractors, common practice is to **clean** (intermediate) results
 – SystemT “consolidators” [Chiticariu et al.10]
 – GATE/JAPE “controls” [Cunningham 02]
 – Implicit in other rule systems, e.g., WHISK [Soderland 99]
 – POSIX regex disambiguation [Fowler 03]
SystemT Consolidators

(create view Caps as
extract regex /[A-Z](\w|-)+/ on D.text as name from Document D;

create view Last as
extract dictionary LastGaz on D.text as name from Document D;

create view CapsLast as
select CombineSpans(C.name, L.name) as name
from Caps C, Last L
where FollowsTok(C.name, L.name, 0, 0);
...

create view PersonAll as
 (select R.name from FirstLast R) union all ...
 ... union all (select R.name from CapsLast R);

create view Person as select * from PersonAll R
 consolidate on R.name using 'ContainedWithin';

output view Person;

[Chiticariu, Krishnamurthy, Li, Raghavan, Reiss, Vaithyanathan, ACL 2010]
Five GATE/JAPE Controls

- Context: \texttt{Sequence 12345 and sequence 12.}
- Match: \texttt{.* x\{d\d+\} .*}

Screenshots from GATE UI

- Context: \texttt{Sequence 12345 and sequence 12.}
- Match: \texttt{First}
- Appelt

General architecture for text engineering

The University of Sheffield.
Declarative Cleaning

• Problem: existing policies are ad-hoc; how to expose a language for user declaration?

• [Fagin, K, Reiss, Vansummeren, PODS14]: spanner formalism for declarative cleaning
 – Captures SystemT, GATE, WHISK, POSIX, ...
 – Can state rules like:

 \[
 \begin{align*}
 x \text{ and } y \text{ are overlapping spans} & \rightarrow \text{ not } [\text{Person}(x) \& \text{Location}(y)] \\
 x \text{ and } y \text{ are separated by “and/or”} & \rightarrow \text{ not } [\text{Person}(x) \& \text{Location}(y)] \\
 y \text{ strictly contains } x & \rightarrow \text{ Prefer Person}(y) \text{ to Person}(x) \\
 \text{true} & \rightarrow \text{ Prefer Location}(y) \text{ to Person}(x)
 \end{align*}
 \]
Prioritized Repairs: Definition

- **Database**
 - Collection of facts
 - **Denial Constraints**
 - Which sets of facts cannot co-exist?
 - **Priority Relation**
 - Binary “is preferred to” relation

Inconsistent Database Instance

- [Arenas, Bertossi, Chomicki 99]: Inconsistent DB represents a set of (equally likely) “repairs”
 - *Then we can ask for the “possible” or “consistent” query answers*

- [Staworko, Chomicki, Marcinkowski 12] add priorities:
 - Improve a consistent DB subsets by “profitable” exchanges of facts, again and again until impossible
 - A *preferred repair* is a subset that cannot be improved
Example

<table>
<thead>
<tr>
<th>professor</th>
<th>university</th>
<th>city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monica</td>
<td>ubiobio</td>
<td>Concepción</td>
</tr>
<tr>
<td>Monica</td>
<td>carleton</td>
<td>Ottawa</td>
</tr>
<tr>
<td>Jorge</td>
<td>uchile</td>
<td>Santiago</td>
</tr>
<tr>
<td>Jorge</td>
<td>ubiobio</td>
<td>Santiago</td>
</tr>
<tr>
<td>Pablo</td>
<td>uchile</td>
<td>Santiago</td>
</tr>
</tbody>
</table>

Violated constraints *(functional dependencies)*:
- professor \rightarrow university, city (*“key constraint”*)
- university \rightarrow city

“Ordinary” repairs

Tuple priority \rightarrow some repairs can be discarded
Complexity of Testing Improvability

In the case of a single functional dependency or two keys per relation, improvability can be tested in polynomial time.

In any other combination of FDs, the problem is NP-complete!

Can a consistent subset be improved?

- In the case of a single functional dependency or two keys per relation, improvability can be tested in polynomial time.
- In any other combination of FDs, the problem is NP-complete!
IE with Recurring Patterns

1. Apply dependency parsing

I want to buy my advisor a gift.

I really want to buy a gift to my advisor.

I want to buy a gift to the secretary and to my advisor.

[Zhang, Baldwin, Ho, K, Li, ACL13]: Restoring grammar in social media, sms, etc.
IE with Recurring Patterns

1. Apply dependency parsing

2. Find freq. recurring patterns

[I want to buy my advisor a gift.]

[I really want to buy a gift to my advisor.]

[I want to buy a gift to the secretary and to my advisor.]

[Zhang, Baldwin, Ho, K, Li, ACL13]: Restoring grammar in social media, sms, etc.
Maximal Frequent Subgraphs

\[\tau = 3 \]

\begin{align*}
\text{Freq.} & \quad \text{Freq.} & \quad \text{Max.} & \quad \text{Max.} \\
\text{g}_1 & \quad \text{g}_2 & \quad \text{g}_3 & \quad \text{g}_4 \\
\end{align*}

\begin{align*}
\text{Maximal Frequent} & \\
\text{Subgraphs} & \\
\end{align*}
Complexity Study

• Naturally, there has been a lot of work on this problem
 – SPIN [Huan et al. 04], MARGIN [Thomas et al. 10], …

• But little was known about the computational complexity

• Studied: impact of assumptions on comp. complexity
 – Graph properties (e.g., trees, treewidth, etc.), label repeatability, bounded #results desired, bounded threshold
 – [Kolaitis, K, PODS’13, TODS’14]

• Solved open problems on graph-mining complexity

• Established a novel approach to graph mining, based on enumeration with hereditary properties
 – [Cohen, K, Sagiv, JCSS’08]
Outline

• Text Analytics in Modern Applications
• Information Extraction Systems & Formalism
• Foundational Research Challenges

Conclusions and Outlook
Summary

• Text analytics & IE
• Rule systems for IE
• A formal framework for rules, relating IE to traditional DB concepts such as Datalog
• Research directions motivated by IE
 – Prioritized repairs
 – Graph mining
Outlook: DB w/ Proper Text Support

• Structured + text data & query model
 – Elegant and useful marriage
 – Based on spanners
 – Gracefully incorporate generic NLP solvers

• Underspecification
 – Balance automation & control: from full specification by experts to feature generation for nonexperienced
 – *Maximally realize the potential of every developer!*

• In-model uncertainty
 – Well-defined & intuitive probability model w/ practical execution cost for principled recall/precision control
PS looking for grads and postdocs to build next-generation DBs in Haifa...